

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 691 (2006) 2679-2685

www.elsevier.com/locate/jorganchem

Trifluoromethylselenato(0) and trifluoromethyltellurato(0) complexes of platinum(II)

Natalya V. Kirij^a, Wieland Tyrra^{b,*}, Ingo Pantenburg^b, Daniela Naumann^b, Harald Scherer^b, Dieter Naumann^{b,*}, Yurii L. Yagupolskii^a

^a Institute of Organic Chemistry, National Academy of Sciences of the Ukraine, Murmanskaya St. 5, UA-02094 Kyiv, Ukraine ^b Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

> Received 29 November 2005; received in revised form 30 January 2006; accepted 30 January 2006 Available online 20 March 2006

Abstract

The series of *cis/trans*-trifluoromethylselenato complexes [Pt(SeCF₃)_{2 - x}Cl_x(PPh₃)₂] (x = 0, 1) was identified by NMR spectroscopic methods. While in acetonitrile solution spectra are dominated by the resonances of the *cis* derivatives, those of pure *cis*-[Pt(SeCF₃)₂- (PPh₃)₂] indicate *cis-trans*-isomerisation in CH₂Cl₂ solution. In contrast, exchange reactions of *cis*-[PtCl₂(PPh₃)₂] and [NMe₄]TeCF₃ only gave evidence for *cis* isomers. Molecular structures of *cis*- and *trans*-[Pt(SeCF₃)₂(PPh₃)₂] and *cis*-[Pt(TeCF₃)₂(PPh₃)₂] are discussed in comparison with related compounds.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Trifluoromethylselenato; Trifluoromethyltellurato; Platinum; Crystal structure

1. Introduction

The chemistry of group 10 metal chalcogenates proves to be a field of considerable interest [1]. Applications as single-source precursors for low-temperature syntheses of metal chalcogenides make this class of compounds attractive for further investigations. The area is dominated by compounds containing the M-SR unit [2], while there has not been put much light on the heavier chalcogenates. The ease in obtaining trifluoromethylchalcogenates of sulphur [3], selenium [4], and tellurium [5], together with the poor solubility of tetramethylammonium halides in common organic solvents, encouraged us to study halide exchange reactions of these tetramethylammonium derivatives [3–5] and group 10 and 11 halides [6–8].

Most palladium and platinum chalcogenato compounds were prepared via oxidative addition of diorganodichalcogen derivatives to tetrakis(triorganophosphine)metal(0) complexes. Experimental [9–13] and theoretical [9,14] approaches have been carried out to provide a deeper insight into the mechanism of *cis/trans* isomerization. The primary formed products were identified as *cis*- $[M(ER)_2(PR'_3)_2]$ (M = Pd, Pt; E = S, Se, Te; R, R' = organic groups) which may dimerize by loss of one PR'₃ ligand to $[M(ER)_2(PR'_3)]_2$. Finally, PR'₃ adds again to the dimer and causes the formation of the *trans* isomer, *trans*- $[M(ER)_2(PR'_3)_2]$.

While SCF₃-compounds of Pt(II) are well documented and characterized especially by NMR spectroscopic means [8,15–17] and crystallographic data [8], those containing the heavier chalcogens are unknown so far. In analogy to reactions of *cis*-[PtCl₂(PPh₃)₂] and [NMe₄]SCF₃ [8], we report in this paper our results with the heavier chalcogen derivatives.

2. Results and discussion

2.1. Exchange reactions between $cis-[PtCl_2(PPh_3)_2]$ and $[NMe_4]ECF_3$ (E = Se, Te)

Reactions of cis-[PtCl₂(PPh₃)₂] and [NMe₄]ECF₃ (E = Se, Te) in stoichiometric ratios of 1:1 proceed more or less

^{*} Corresponding authors. Tel.: +49 221 4703276; fax: +49 221 4703276/ 4705196.

E-mail addresses: tyrra@uni-koeln.de (W. Tyrra), d.naumann@ uni-koeln.de (D. Naumann).

⁰⁰²²⁻³²⁸X/ $\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2006.01.062

indiscriminately to give product mixtures of cis-[Pt(ECF₃)-Cl(PPh₃)₂] (Eq. (1a)), equilibrating with cis-[Pt(ECF₃)₂-(PPh₃)₂] and the starting material (Eq. (1b)).

Selective reactions occur with stoichiometric ratios of cis-[PtCl₂(PPh₃)₂] and [NMe₄]ECF₃ (E = Se, Te) of 1:2. In both cases in MeCN solution, the cis complexes, cis-[Pt(ECF₃)₂(PPh₃)₂], are selectively formed (Eq. (2)).

$$\underset{Cl}{\overset{Cl}{\underset{PPh_{3}}{\longrightarrow}}} PPh_{3} + 2 [NMe_{4}]ECF_{3} \xrightarrow{MeCN} -2[NMe_{4}]Cl} F_{3}CE \xrightarrow{F_{3}CE/_{1}} PPh_{3} (2)$$

E = Se, Te

Both compounds were isolated as yellow or orange crystals and their composition was elucidated by NMR spectroscopic means (Table 1) as well as XRD measurements (Table 2, Figs. 1 and 5). Elemental analyses support the compositions.

While cis-[Pt(TeCF₃)₂(PPh₃)₂] does not undergo cistrans isomerization in CH₂Cl₂ or MeCN solutions, the selenium derivatives, *cis*-[Pt(SeCF₃)Cl(PPh₃)₂] and *cis*-[Pt(SeCF₃)₂(PPh₃)₂], equilibrate with the corresponding *trans* isomers (Eq. (3)). After a total reaction time of 60 h, the equilibrium is shifted completely to the right (Eq. (3)). ¹⁹F and ³¹P NMR spectra recorded after 24 and 48 h only showed the resonances of the monomeric *cis* and *trans* isomers. No spectroscopic evidence was found for a dimeric compound such as [Pt(SeCF₃)₂(PPh₃)]₂ respective for free PPh₃. Possibly, the life-time of such dimers which were even isolated in other cases, e.g., [Pt(Se(2-C₄H₃S)₂(PPh₃)]₂ [11]) is too short to be detected on the NMR time-scale. Unlike in CH₂Cl₂, isomerization appears to be very slow in MeCN.

$$F_{3}CSe///, Pt \longrightarrow PPh_{3} \xrightarrow{CH_{2}Cl_{2}} F_{3}CSe///, Pt \longrightarrow X$$
(3)
$$X = Cl. SeCF_{2}$$

Re-dissolving of the crystalline material obtained after isomerization in CH_2Cl_2 showed that the *trans* isomer does not undergo any exchange processes in MeCN. Results of the crystal structure analysis for *trans*-[Pt(SeCF_3)_2(PPh_3)_2] are given later.

A complete set of the NMR data for all derivatives synthesized or detected is provided in Table 1 indicating good agreement with data reported for the sulphur derivatives [8,15–17] and related PtSeR, e.g., [9,10,18–20] and PtTeR compounds e.g. [19–21] as well as, with respect to the ECF₃ group, group 11 metallates [6,7]. In solution the existence of only one *cis*- and one *trans*-isomer is anticipated, while in the solid state $[Pt(ER)_2(PR'_3)_2]$ complexes could give rise to four possible isomers, *cis/anti*, *cis/syn*, *trans/anti* and *trans/syn* [9] (Scheme 1).

Table 1 Compilation of NMR chemical shifts and couplings of PtECF₃ compounds (E = Se, Te; 21 °C, CD_2Cl_2)^a

	$\mathit{cis}\text{-}Pt(SeCF_3)Cl(PPh_3)_2$	trans-Pt(SeCF ₃)Cl(PPh ₃) ₂	cis-Pt	trans-Pt	cis-Pt	<i>cis</i> -Pt
			$(\text{SeCF}_3)_2(\text{PPh}_3)_2$	$(\text{SeCF}_3)_2(\text{PPh}_3)_2$	$(\text{TeCF}_3)\text{Cl}(\text{PPh}_3)_2$	$(\text{TeCF}_3)_2(\text{PPh}_3)_2$
δ (¹⁹ F)	-21.6	-23.8	-21.7	-22.9	-18.2	-19.6
${}^{3}J_{\text{Pt.F}}$ (Hz)	45	88	57	64	28	42
$\delta (^{31}P)^{b}$	17.8/14.6	21.7	14.1	17.2	18.5/12.5	11.1
${}^{1}J_{\mathrm{Pt,P}}(\mathrm{Hz})^{\mathrm{b}}$	2998/3703	2644	3143	2660	2790/3710	3095
${}^{4}J_{\rm P,F} ({\rm Hz})^{\rm b}$	10.7/0.9	1.4	Not resolved	Not resolved	9.0/1.2	≈3.9
${}^{2}J_{P,P}$ (Hz)	15				15	
$^{2}J_{\mathrm{Se(Te),P}}(\mathrm{Hz})^{\mathrm{b}}$	n.o. ^c /≈70		n.o./≈140		n.o./≈120	≈90/≈110
δ (¹⁹⁵ Pt)	-4550	-4626	-4788	-4344	-4602^{d}	-5122^{d}
δ (⁷⁷ Se)	393	239	267	237		
δ (¹²⁵ Te)					692 ^d	457 ^d
$^{2}J_{\text{Se(Te), F}}$ (Hz)	≈30	30	33	33	99	134
56(10),1 ()					103 ^d	150 ^d
${}^{1}J_{\mathrm{Pt,Se(Te)}}\left(\mathrm{Hz}\right)$	≈ 160	≈150	≈ 18	≈13	Broad	≈490

^{a 13}C NMR signals of ECF₃ groups were detected in all cases as quartets at 125 ± 2 ppm (${}^{1}J_{F,C} \approx 330$ Hz) for SeCF₃ groups and 93 ± 2 ppm (${}^{1}J_{F,C} \approx 360$ Hz) for TeCF₃ groups.

^b First value: PPh₃ standing *trans* to ECF₃; second value: PPh₃ standing *cis* to ECF₃.

^c n.o., not observed.

^d Solvent, DMF-*d*₇.

Table 2

Crystal data and structure refinement parameters for cis-Pt(SeCF₃)₂(PPh₃)₂ (1), cis-Pt(TeCF₃)₂(PPh₃)₂ (2) and trans-Pt(SeCF₃)₂(PPh₃)₂ · 2CH₂Cl₂ (3)

$ \begin{split} & \mbox{Figure} 1 \mbox{ formula} & C_{a}H_{a}F_{a}P_{2}S_{C}Pt & C_{a}H_{a}F_{a}P_{4}F_{2}P_{1}F_{2}Pt & C_{a}H_{a}F_{a}P_{2}C_{4}S_{C}Pt \\ & \mbox{ formula} mass (g mol^{-1}) & \mbox{ for figure} 1015.57 & \mbox{ for figure} 112.88 & \mbox{ for figure} 122.88 & for fi$		1	2	3	
Formula mass (g mol ⁻¹) 1015.57 1112.85 1185.42 Data collection STOE image plate diffraction system II Mo K α (graphic monochromator, $\lambda = 0.71073$ Å) Temperature (K) 150(2) 150(2) 150(2) Index range $-12 \leq h \leq 12$ $-26 \leq h \leq 24$ $-13 \leq h \leq 13$ $-13 \leq l \leq 13$ $-19 \leq l \leq 15$ $-15 \leq l \leq 15$ $-13 \leq l \leq 13$ $-19 \leq l \leq 180^\circ$, $p = 10^\circ$ $0^\circ \leq \infty \leq 180^\circ$; $p = 90^\circ$ $0^\circ \leq \infty \leq 180^\circ$; $p = 0^\circ$ $0^\circ \leq \infty \leq 180^\circ$; $p = 0^\circ$ $0^\circ \simeq \propto \leq 180^\circ$; $p = 90^\circ$ Incernent $A_\infty = 2^\circ$ $A_\infty = 1^\circ$ $A_\infty = 1^\circ$ No. of images 124 268 180 Exposure time (min) 7 3 3 Detector distance (mm) 120 100 120 Dara collected 19790 21779 20123 Total data collected 19790 22-0.1 - 0.1 0.30490/0.5154 Observed data 6.2751/0.4810 0.30490/0.5154 0.30390/0.5707 Crystall system Monoclinic Tellinic Tellinic Trans	Empirical formula	$C_{38}H_{30}F_6P_2Se_2Pt$	$C_{38}H_{30}F_6P_2Te_2Pt$	$C_{40}H_{34}F_6P_2Cl_4Se_2Pt$	
Data color STOE image plate diffraction system II Mo K a (graphite monochromator, $k = 0.71073$ Å) Mo Ka (graphite monochromator, $k = 0.71073$ Å) Stop Temperature (K) 1.50(2)	Formula mass (g mol ⁻¹)	1015.57	1112.85	1185.42	
Difference STOE image plate difference system II Rodation No Kα (graphic monochromator, $\lambda = 0.71073$ Å) Temperature (K) 150(2) 150(2) 150(2) Index range -12 ≤ k ≤ 12 -26 < k ≥ 24	Data collection				
Radiation Mo Kα (graphite monochromator, $\tilde{k} = 0.71073$ Å) Temperature (K) 150(2) 150(2) 150(2) Index range $-12 \le k \le 12$ $-26 \le k \le 24$ $-15 \le k \le 13$ $-13 \le l \le 13$ $-15 \le k \le 15$ $-15 \le k \le 13$ $-13 \le l \le 13$ $-15 \le k \le 15$ $-15 \le k \le 15$ Rotation angle $0^{\circ} \le \omega \le 180^{\circ}; \varphi = 0^{\circ}$ $0^{\circ} \le \omega \le 180^{\circ}; \varphi = 0^{\circ}$ $0^{\circ} \le \omega \le 180^{\circ}; \varphi = 0^{\circ}$ No. of images 124 268 180 Exposure time (min) 7 3 3 Detector distance (mm) 120 100 120 20 Range 19-54.8 1.9-54.8 2.3-59.5 Total data collected 19700 21779 20123 Unique data 7006 4153 5700 Observed data 6624 0.0352 0.0340/0.5707 Transmission 0.2751/0.4810 0.3049/0.5154 0.0359/0.5707 Crystal size (mm ³) 0.2-0.05 0.05 0.2 \cdot 0.1 - 0.1 0.2 - 0.1 - 0.1 Colour, habi Yellow, column Yellow, prism	Diffractometer		STOE image plate diffraction system II		
Temperature (k) 150(2) 150(2) 150(2) Index range $-12 \le h \le 12$ $-26 \le h \le 24$ $-13 \le h \le 13$ $-12 \le k \le 24$ $-15 \le k \le 15$ $-13 \le h \le 13$ $-13 \le l < 13$ $-19 \le l < 19$ $-15 \le k \le 15$ $-13 \le l < 13$ $-19 \le l < 19^\circ$ $-15 \le k \le 15^\circ$ $0^\circ \le \infty \le 180^\circ, \varphi = 0^\circ$ $0^\circ \le \infty \le 180^\circ, \varphi = 0^\circ$ $0^\circ \le \infty \le 180^\circ, \varphi = 0^\circ$ $0^\circ \le \infty \le 180^\circ, \varphi = 90^\circ$ $0^\circ \le \infty \le 180^\circ, \varphi = 0^\circ$ $A_\odot = 1^\circ$ No. of images 124 268 180 Steposure time (min) 7 3 3 Detector distance (mm) 120 100 120 208 Range 0.954 0.9543 2.3-50.5 Total data collected 19790 2173 20123 Unique data 6721 3776 5263 Range 0.0654 0.0352 0.0340 Observed data 6721 3776 5263 Crystallographic data Crystallographic data Crystallographic data 619(1) 0.209(1)	Radiation		Mo K α (graphite monochromator, $\lambda = 0.7107$	3 Å)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Temperature (\mathbf{K})	150(2)	150(2)	150(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Index range	-12 < h < 12	$-26 \le h \le 24$	$-13 \le h \le 13$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	index range	-25 < k < 24	$-15 \le k \le 15$	$-15 \le k \le 13$	
Retation angle $1.5 \le i \le 10^\circ$; $\varphi = 0^\circ$ $1.0 \le i \le 10^\circ$; $\varphi = 0^\circ$ $1.0 \le i \le 10^\circ$; $\varphi = 0^\circ$ Increment $\Delta \phi = 2^\circ$ $\Delta \omega = 1^\circ$ $\Delta \omega = 2^\circ$ No. of images 124 268 180 Supposer time (imi) 7 3 3 Detector distance (mm) 120 100 120 20 Range 1.9-54.8 1.9-54.8 2.3-59.5 Total data collected 19700 21779 20123 Unique data 6721 3776 5263 Observed data 6721 3776 5263 Rawg 0.0654 0.0390.05707 Crystal shape optimization [42,44] Transinsion 0.2:0.05 \cdot 0.05 0.2:0.1 \cdot 0.1 0.2:0.1 \cdot 0.1 Colour, habit Yellow, column Yellow, prism Yellow, prism Crystal size (mm ³) 0.2:0.05 \cdot 0.05 0.2:0.1 \cdot 0.1 0.2:0.1 \cdot 0.1 Colour, habit Yellow, column Yellow, prism Yellow, prism Crystal size (mm ³) 0.2:0.05 \cdot 0.05 0.2:0.1 \cdot 0.1 0.2:0.1:0.1		$-25 \leqslant k \leqslant 24$ 13 < l < 13	$-15 \leqslant k \leqslant 15$ $10 < l < 10$	$15 \leq l \leq 15$	
Relation arge $0 \le 0 \le 100$, $p = 0$ $0 \le 0 \le 100$, $p = 0$ $0 \le 0 \le 100$, $p = 0$ $0 \le 0 \le 100$, $p = 0$ Increment $\Delta \omega = 2^{\circ}$ $\Delta \omega = 1^{\circ}$ $\Delta \omega = 2^{\circ}$ No. of images 124 268 180 Exposure time (min) 7 3 3 Detector distance (mm) 120 100 123 2// Range 1.9-54.8 1.9-54.8 2.3-59.5 Total data collected 19700 21779 20123 Unique data 7906 4153 5700 Observed data 6.721 3776 5263 Range 0.0554 0.03049/0.5154 0.03049/0.5707 Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data Crystallographic data	Potation angle	$-13 \leqslant l \leqslant 15$	$-19 \leqslant l \leqslant 19$ $0^{\circ} \leq \omega \leq 180^{\circ}; \omega = 0^{\circ}$	$-15 \leqslant l \leqslant 15$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rotation angle	$0 \leq \omega \leq 68^{\circ}, \phi = 0$	$0 \leq 0 \leq 180$, $\psi = 0$	$0 \leq \omega \leq 180^\circ$, $\varphi = 0$	
Increment $\Delta \omega = L^{2}$ $\Delta \omega = 1^{-}$ $\Delta \omega = L^{-}$ No. of images 124 268 180 Exposure time (min) 7 3 3 Detector distance (mm) 120 100 120 20 Range 1.9-54.8 1.9-54.8 2.3-59.5 Total data collected 19700 21779 20123 Unique data 7906 4153 5700 Observed data 6721 3776 5263 Reage 0.0654 0.0352 0.0340 Absorption correction Numerical, after crystal shape optimization [42,44] 0.3039/0.5707 Crystallographic data C2: 0.05 · 0.05 0.2 · 0.1 · 0.1 0.2 · 0.1 · 0.1 Crystallographic data Crystallographic data Triclinic Triclinic Crystal system Monoclinic Monoclinic Triclinic Space group P2 (no. 4) C2/c (no. 15) P1 (no. 2) a (Å) 9.619(1) 20.359(1) 9.546(1) b (Å) 20.036(2) 12.347/(1) 1.012(1)	T	$0 \leq \omega \leq 08$; $\varphi = 90$	$0 \leq \omega \leq 88$, $\varphi = 90$	$0 \leq \omega \leq 180$; $\varphi = 90$	
No. of mages 124 268 180 Exposure time (min) 7 3 3 Detector distance (mm) 120 100 120 20 Range 19-54.8 19-54.8 23-59.5 Total data collected 19790 21779 20123 Unique data 706 4153 5700 Observed data 6721 3776 5263 Range 0.0654 0.0352 0.03400 Absorption correction Numerical, after crystal shape optimization [42,44] Transmission 0.2751/0.4810 0.3039/0.5707 Crystallographic data C 0.2 · 0.1 · 0.1 0.2 · 0.1 · 0.1 C.2 · 0.1 · 0.1 Colour, habit Yellow, column Yellow, prism Yellow, prism Yellow, prism Crystal system Monoclinic Triclinic Triclinic Sage group P1 (no. 4) C2/c (no. 15) P1 (no. 2) a (Å) 9.619(1) 20.395(1) 9.544(1) 11.012(1) c (Å) c (Å) 10.04(1) 15.514(1) 11.02(1) c (Å) 25.51(1) 9.55(1) y (°) 11.04(Increment	$\Delta \omega = 2^{\circ}$	$\Delta \omega = 1^{\circ}$	$\Delta \omega = 2^{\circ}$	
Exposure time (min) / / 3 3 3 3 3 3 2 3 3 2 2 3 3 2 2 4 3 2 3 3 5 2 0 123 3 10 2 20 Range 1.9–54.8 1.9–54.8 2.3–59.5 10 213 20 20 Range 1.9–54.8 2.1779 20 123 20 20 20 20 20 20 20 20 20 20 20 20 20	No. of images	124	268	180	
Detector distance (mm) 120 100 120 120 120 120 120 123 154 159 154 159 154 159 155 150 123 157 154 164 159 155 150 155 150 155 155 155 155 155 155	Exposure time (min)		3	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Detector distance (mm)	120	100	120	
Total data collected 19790 2179 20123 Unique data 7906 4153 5700 Observed data 6721 3776 5263 R_{merg} 0.0654 0.0352 0.0340 Absorption correction Numerical, after crystal shape optimization [42,44] 0.3039/0.5707 Crystal data 0.2751/0.4810 0.3049/0.5154 0.3039/0.5707 Crystal data Crystal size (mm³) 0.2 · 0.05 · 0.05 0.2 · 0.1 · 0.1 0.2 · 0.1 · 0.1 Colour, habit Yellow, column Yellow, prism Yellow, prism Yellow, prism Space group P.2 (no. 4) C.2 / c (no. 15) PI (no. 2) a (Å) 9.619(1) 20.395(1) 9.546(1) b (Å) 10.036(2) 12.347/(1) 11.012(1) c (Å) 10.194(1) 15.514(1) 11.258(1) x (°) T 70.34(1) 12.437/(1) 12.437/(1) x (Å) 1833.7(4) 3794.1(4) 1024.3(2) 2 x (A) 2 4 1 1 <	20 Range	1.9–54.8	1.9–54.8	2.3–59.5	
Unique data 7906 4153 5700 Observed data 6721 3776 5263 R_{merg} 0.0654 0.0352 0.0340 Absorption correction $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Total data collected	19790	21779	20123	
Observed data 6721 3776 5263 R_{merg} 0.0654 0.0352 0.0340 Absorption correction Numerical, after crystal shape optimization [42,44] 0.3039/0.5707 Crystal size (mn ³) 0.2 · 0.05 · 0.05 0.2 · 0.1 · 0.1 0.2 · 0.1 · 0.1 Colour, habit Yellow, column Yellow, prism Yellow, prism Crystal size (mn ³) 0.2 · 0.05 · 0.05 0.2 · 0.1 · 0.1 0.2 · 0.1 · 0.1 Colour, habit Yellow, column Yellow, prism Triclinic Space group P2 ₁ (no. 4) C2/c (no. 15) P1 (no. 2) a (Å) 9.619(1) 20.395(1) 9.546(1) b (Å) 20.036(2) 12.347/(1) 11.012(1) c (Å) 10.194(1) 15.514(1) 11.02(1) x (°) 70.34(1) 10.258(1) 9.51(1) x (°) 70.34(1) 10.24.3(2) 2 x (°) 1.833.7(4) 3794.1(4) 1024.3(2) Z 2 4 1 2 Dack (g cm ⁻³) 1.833.7(4)	Unique data	7906	4153	5700	
R_{merg} 0.0654 0.0352 0.0340 Absorption correction Numerical, after crystal shape optimization [42,44] 0.3039/0.5707 Transmission 0.2751/0.4810 0.3049/0.5154 0.3039/0.5707 Crystallographic data Crystallographic data 0.2:0.05:0.05 0.2:0.1:0.1 0.2:0.1:0.1 Crystal size (mm ³) 0.2:0.05:0.05 0.2:0.1:0.1 0.2:0.1:0.1 0.2:0.1:0.1 Colour, habit Yellow, column Yellow, prism Yellow, prism Yellow, prism Crystal system Monoclinic Monoclinic Trictinic Space group P2 ₁ (no. 4) C2/c (no. 15) P1 (no. 2) a (Å) 20.036(2) 12.347/(1) 11.012(1) c (Å) 10.194(1) 15.514(1) 11.258(1) x (°) 7(°) 70.34(1) 80.951(1) y (°) 111.04(1) 103.79(1) 68.04(1) y (°) 2 4 1 D _{cak} (g cm ⁻³) 1.833.7(4) 3794.1(4) 1024.3(2) Z 2 4 1	Observed data	6721	3776	5263	
Absorption correction Numerical, after crystal shape optimization [42,44] Output Transmission 0.2751/0.4810 0.309/0.5154 0.3039/0.5707 Crystal size (mm ³) 0.2 · 0.05 · 0.05 0.2 · 0.1 · 0.1 0.2 · 0.1 · 0.1 Copyratellographic data Vellow, column Yellow, prism Yellow, prism Crystal size (mm ³) 0.2 · 0.05 · 0.05 0.2 · 0.1 · 0.1 0.2 · 0.1 · 0.1 Copyret (mail) Vellow, column Yellow, prism Yellow, prism Crystal size (mm ³) 0.2 · 0.1 · 0.1 0.2 · 0.1 · 0.1 0.2 · 0.1 · 0.1 Space group P21 (no. 4) C2/c (no. 15) P1 (no. 2) a (Å) 9.619(1) 20.395(1) 9.546(1) b (Å) 20.036(2) 12.347/(1) 11.02(1) c (Å) 10.194(1) 15.514(1) 11.258(1) x (°) 70.34(1) 10.24.3(2) 2 x (°) 85.51(1) 1024.3(2) 2 Z 2 4 1 2 Oake (g cm ⁻³) 1.833.7(4) 3794.1(4) 1024.3(2)	R _{merg}	0.0654	0.0352	0.0340	
Transmission $0.2751/0.4810$ $0.3049/0.5154$ $0.3039/0.5707$ Crystallographic data Crystallographic data $0.2 \cdot 0.1 \cdot 0.1$ $0.2 \cdot 0.1 \cdot 0.1$ $0.2 \cdot 0.1 \cdot 0.1$ Crystal size (mm ³) $0.2 \cdot 0.05 \cdot 0.05$ $0.2 \cdot 0.1 \cdot 0.1$ $0.2 \cdot 0.1 \cdot 0.1$ $0.2 \cdot 0.1 \cdot 0.1$ Crystal system Monoclinic Yellow, prism Yellow, prism Yellow, prism Crystal system Monoclinic Monoclinic Triclinic Space group $P2_1$ (no. 4) $C2/c$ (no. 15) P^{1} (no. 2) a (Å) $9.619(1)$ $20.395(1)$ $9.546(1)$ b (Å) $20.036(2)$ $12.347/(1)$ $11.012(1)$ $11.528(1)$ a (°) 7 $70.34(1)$ $9.546(1)$ $9.546(1)$ β (°) $111.04(1)$ $103.79(1)$ $68.04(1)$ $9.51(1)$ γ (°) $70.34(1)$ $1024.3(2)$ Z 4 1 Z 2 4 1 2 2 4 1 Q (bune (Å ³) $1833.7(4)$ $3794.1(4)$ $1024.3(2)$ Z Z Z Z <	Absorption correction	Numerical, after crystal shape optimization [42,44]			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Transmission	0.2751/0.4810	0.3049/0.5154	0.3039/0.5707	
Crystal size (mm ³) $0.2 \cdot 0.05 \cdot 0.05$ $0.2 \cdot 0.1 \cdot 0.1$ $0.2 \cdot 0.1 \cdot 0.1$ Colour, habit Yellow, column Yellow, prism Yellow, prism Crystal system Monoclinic Monoclinic Triclinic Space group P21 (no. 4) $C2/c$ (no. 15) P1 (no. 2) a (Å) 9.619(1) $20.395(1)$ $9.546(1)$ b (Å) $20.036(2)$ $12.347/(1)$ $11.012(1)$ c (Å) $10.194(1)$ $15.514(1)$ $11.258(1)$ α (°) 70.34(1) $11.258(1)$ $70.34(1)$ α (°) 70.34(1) $10.272(1)$ $89.51(1)$ γ (°) 89.51(1) $70.34(1)$ $1024.3(2)$ Z 2 4 1 D_{calc} (g cm ⁻³) 1.839 1.948 1.922 μ (Mo K α , mm ⁻¹) 5.956 5.346 5.598 $F(000)$ 976 2096 572 Structure determination SiR-92 [46] and SHELXL-97 [47] $R_1 = 0.0238$ R indexes (all data) $w_{R_2} = 0.0800$ $w_{R_2} = 0.0553$ $w_{R_2} = 0.0528$ $R_1 =$	Crystallographic data				
Colour, habit Yellow, column Yellow, prism Yellow, prism Crystal system Monoclinic Monoclinic Triclinic Space group $P2_1$ (no. 4) $C2/c$ (no. 15) $P\overline{1}$ (no. 2) a (Å) 9.619(1) 20.395(1) 9.546(1) b (Å) 20.036(2) 12.347/(1) 11.012(1) c (Å) 10.194(1) 15.514(1) 11.258(1) α (°) $70.34(1)$ 68.04(1) 89.51(1) β (°) 111.04(1) 103.79(1) 68.04(1) γ (°) $89.51(1)$ 9.51(1) 9.51(1) Volume (Å ³) 1833.7(4) 3794.1(4) 1024.3(2) Z 2 4 1 D_{calc} (g cm ⁻³) 1.839 μ (Mo K α , mm ⁻¹) 5.956 5.346 5.598 $F(000)$ 976 2096 572 Structure analysis and refinement Sure-92 [46] and SHELXL-97 [47] No. of variables $K_1 = 0.0367$ $R_1 = 0.0223$ $R_1 = 0.0238$ $R_2 = 0.0583$ R indexes (all data) $W_{R_2} = 0.0800$ $w_{R_2} = 0.0553$ $w_{R_2} = 0.0528$ <td>Crystal size (mm^3)</td> <td>$0.2 \cdot 0.05 \cdot 0.05$</td> <td>$0.2 \cdot 0.1 \cdot 0.1$</td> <td>$0.2 \cdot 0.1 \cdot 0.1$</td>	Crystal size (mm^3)	$0.2 \cdot 0.05 \cdot 0.05$	$0.2 \cdot 0.1 \cdot 0.1$	$0.2 \cdot 0.1 \cdot 0.1$	
Crystal system Monoclinic Monoclinic Triclinic Space group P_2_1 (no. 4) $C2/c$ (no. 15) P_1 (no. 2) a (Å) 9.619(1) 20.395(1) 9.546(1) b (Å) 20.036(2) 12.347/(1) 11.012(1) c (Å) 10.194(1) 15.514(1) 11.258(1) x (°) 70.34(1) 88.04(1) 9.51(1) y (°) 89.51(1) 10.24.3(2) 2 Volume (Å ³) 1833.7(4) 3794.1(4) 1024.3(2) Z 2 4 1 D_{calc} (g cm ⁻³) 1.839 1.948 1.922 μ (Mo Ka, mm ⁻¹) 5.956 5.346 5.598 $F(000)$ 976 2096 572 Structure analysis and refinement SIR-92 [46] and SHELXL-97 [47] No. of variables K indexes $[I > 2\sigma]$ $R_1 = 0.0367$ $R_1 = 0.0223$ $R_1 = 0.0238$ R indexes (all data) $wR_2 = 0.0850$ $wR_2 = 0.0553$ $wR_2 = 0.0528$ $R_1 = 0.0367$ $R_1 = 0.0247$ $R_1 = 0.0227$ $wR_2 = 0.0528$ $R_1 = 0.0367$ $R_1 = 0.0247$ <td>Colour, habit</td> <td>Yellow column</td> <td>Yellow prism</td> <td>Yellow prism</td>	Colour, habit	Yellow column	Yellow prism	Yellow prism	
$\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	Crystal system	Monoclinic	Monoclinic	Triclinic	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Space group	P_{2} (no. 4)	C^{2}/c (no. 15)	$P\bar{1}$ (no. 2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a(\mathbf{\hat{A}})$	9 619(1)	20 395(1)	9 546(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$h(\Lambda)$	20.026(2)	12 247/(1)	11 012(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v(\mathbf{A})$	20.030(2)	12.347/(1)	11.012(1)	
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$	$c(\mathbf{A})$	10.194(1)	15.514(1)	11.230(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α (°)	111.04(1)	102 70(1)	/0.34(1)	
$9^{(2)}$ 89.51(1)Volume (Å ³)1833.7(4)3794.1(4)1024.3(2)Z241 D_{cale} (g cm ⁻³)1.8391.9481.922 μ (Mo K α , mm ⁻¹)5.9565.3465.598 $F(000)$ 9762096572Structure analysis and refinementStructure determinationSIR-92 [46] and SHELXL-97 [47]No. of variables444224253R indexes $[I > 2\sigma]$ $R_1 = 0.0367$ $R_1 = 0.0223$ $R_1 = 0.0238$ R indexes (all data) $wR_2 = 0.0800$ $wR_2 = 0.0553$ $wR_2 = 0.0528$ $R_1 = 0.0482$ $R_1 = 0.0247$ $R_1 = 0.0272$ $wR_2 = 0.0858$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $-$ CDC-0.0551 $-$ Hole/peak [e Å ⁻³] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48]286231275938286232	β (°)	111.04(1)	103.79(1)	68.04(1)	
Volume (A')1833.7(4) $3794.1(4)$ $1024.3(2)$ Z 241 D_{calc} (g cm ⁻³)1.8391.9481.922 μ (Mo K α , mm ⁻¹)5.9565.3465.598 $F(000)$ 9762096572Structure analysis and refinementStructure analysis and refinementStructure determinationSIR-92 [46] and SHELXL-97 [47]No. of variables444224253 R indexes $[I > 2\sigma]$ $R_1 = 0.0367$ $R_1 = 0.0223$ $R_1 = 0.0238$ R indexes (all data) $wR_2 = 0.0800$ $wR_2 = 0.0553$ $wR_2 = 0.0528$ $R_1 = 0.0482$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $ S$ (all data)0.9671.0121.072Hole/peak [e Å ⁻³] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48]286231275938286232	γ (°)	1000 5(4)	2504.144	89.51(1)	
Z 2 4 1 D_{calc} (g cm ⁻³) 1.839 1.948 1.922 μ (Mo K α , mm ⁻¹) 5.956 5.346 5.598 $F(000)$ 976 2096 572 Structure analysis and refinement SIR-92 [46] and SHELXL-97 [47] 5.956 Structure determination SIR-92 [46] and SHELXL-97 [47] 253 No. of variables 444 224 253 R indexes [$I > 2\sigma$] $R_1 = 0.0367$ $R_1 = 0.0223$ $R_1 = 0.0238$ R indexes (all data) $wR_2 = 0.0800$ $wR_2 = 0.0553$ $wR_2 = 0.0528$ $R_1 = 0.0482$ $R_1 = 0.0247$ $R_1 = 0.0272$ $wR_2 = 0.0858$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $ S$ (all data) 0.967 1.012 1.072 Hole/peak [e Å^{-3}] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48] 286231 275938 286232	Volume (A ²)	1833.7(4)	3/94.1(4)	1024.3(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z	2	4	l	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{\text{calc}} (\text{g cm}^{-3})$	1.839	1.948	1.922	
$F(000)$ 976 2096 572 Structure analysis and refinement Structure determination StR-92 [46] and SHELXL-97 [47] No. of variables 444 224 253 R indexes $[I > 2\sigma]$ $R_1 = 0.0367$ $R_1 = 0.0223$ $R_1 = 0.0238$ R indexes (all data) $wR_2 = 0.0800$ $wR_2 = 0.0553$ $wR_2 = 0.0528$ $R_1 = 0.0482$ $R_1 = 0.0247$ $R_1 = 0.0272$ $wR_2 = 0.0858$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $ -$ S (all data) 0.967 1.012 1.072 Hole/peak [e Å^{-3}] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48] 286231 275938 286232	μ (Mo K α , mm ⁻¹)	5.956	5.346	5.598	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	F(000)	976	2096	572	
Structure determinationSIR-92 [46] and SHELXL-97 [47]No. of variables444224253R indexes $[I > 2\sigma]$ $R_1 = 0.0367$ $R_1 = 0.0223$ $R_1 = 0.0238$ R indexes (all data) $wR_2 = 0.0800$ $wR_2 = 0.0553$ $wR_2 = 0.0528$ $R_1 = 0.0482$ $R_1 = 0.0247$ $R_1 = 0.0272$ $wR_2 = 0.0858$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $ -$ S (all data)0.9671.0121.072Hole/peak [e Å^{-3}] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48]286231275938286232	Structure analysis and refinement				
No. of variables444224253 R indexes $[I > 2\sigma]$ $R_1 = 0.0367$ $R_1 = 0.0223$ $R_1 = 0.0238$ R indexes (all data) $wR_2 = 0.0800$ $wR_2 = 0.0553$ $wR_2 = 0.0528$ $R_1 = 0.0482$ $R_1 = 0.0247$ $R_1 = 0.0272$ $wR_2 = 0.0858$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $ S$ (all data) 0.967 1.012 1.072 Hole/peak [e Å^{-3}] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48] 286231 275938 286232	Structure determination		SIR-92 [46] and SHELXL-97 [47]		
R indexes $[I > 2\sigma]$ $R_1 = 0.0367$ $R_1 = 0.0223$ $R_1 = 0.0238$ R indexes (all data) $wR_2 = 0.0800$ $wR_2 = 0.0553$ $wR_2 = 0.0528$ $R_1 = 0.0482$ $R_1 = 0.0247$ $R_1 = 0.0272$ $wR_2 = 0.0858$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $ -$ S (all data) 0.967 1.012 1.072 Hole/peak [e Å ⁻³] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48] 286231 275938 286232	No. of variables	444	224	253	
R indexes (all data) $wR_2 = 0.0800$ $wR_2 = 0.0553$ $wR_2 = 0.0528$ $R_1 = 0.0482$ $R_1 = 0.0247$ $R_1 = 0.0272$ $wR_2 = 0.0858$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $ -$ S (all data) 0.967 1.012 1.072 Hole/peak [e Å^{-3}] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48] 286231 275938 286232	<i>R</i> indexes $[I \ge 2\sigma]$	$R_1 = 0.0367$	$R_1 = 0.0223$	$R_1 = 0.0238$	
$R_1 = 0.0482$ $R_1 = 0.0247$ $R_1 = 0.0272$ $wR_2 = 0.0858$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $ -$ S (all data) 0.967 1.012 1.072 Hole/peak [e Å ⁻³] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48] 286231 275938 286232	R indexes (all data)	$wR_2 = 0.0800$	$wR_2 = 0.0553$	$wR_2 = 0.0528$	
$wR_2 = 0.0858$ $wR_2 = 0.0561$ $wR_2 = 0.0548$ Flack x $-0.025(8)$ $ -$ S (all data) 0.967 1.012 1.072 Hole/peak [e Å ⁻³] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48] 286231 275938 286232		$R_1 = 0.0482$	$R_1 = 0.0247$	$R_1 = 0.0272$	
Flack x $-0.025(8)$ $ S$ (all data) 0.967 1.012 1.072 Hole/peak [e Å ⁻³] $-1.648/1.199$ $-1.123/0.948$ $-1.371/1.245$ CCDC-number [48] 286231 275938 286232		$wR_2 = 0.0858$	$wR_2 = 0.0561$	$wR_2 = 0.0548$	
S (all data) 0.967 1.012 1.072 Hole/peak [e Å ⁻³] -1.648/1.199 -1.123/0.948 -1.371/1.245 CCDC-number [48] 286231 275938 286232	Flack x	-0.025(8)	_	_	
Hole/peak [e Å ⁻³]-1.648/1.199-1.123/0.948-1.371/1.245CCDC-number [48]286231275938286232	S (all data)	0.967	1.012	1.072	
CCDC-number [48] 286231 275938 286232	Hole/peak [e Å ⁻³]	-1.648/1.199	-1.123/0.948	-1.371/1.245	
	CCDC-number [48]	286231	275938	286232	

 $R_{1} = \sum ||F_{o}| - |F_{c}|| \sum |F_{o}|, wR_{2} = \left[\sum w(|F_{o}|^{2} - |F_{c}|^{2})^{2} / \sum w(|F_{o}|^{2})^{2}\right]^{1/2}, S_{2} = \left[\sum w(|F_{o}|^{2} - |F_{c}|^{2})^{2} / (n-p)\right]^{1/2}, \text{ with } w = 1 / [\sigma^{2}(F_{o})^{2} + (0.0475 \cdot P)^{2}] \text{ for } (1), w = 1 / [\sigma^{2}(F_{o})^{2} + (0.0253 \cdot P)^{2} + 1.310 \cdot P] \text{ for } (3), \text{ where } P = (F_{o}^{2} + 2F_{c}^{2}) / 3.F_{c}^{*} = kF_{c}[1 + 0.001 \cdot |F_{c}|^{2}\lambda^{3} / \sin(2\theta)]^{-1/4}.$

2.2. Molecular structures of cis- $[Pt(SeCF_3)_2(PPh_3)_2]$ (1), trans- $[Pt(SeCF_3)_2(PPh_3)_2]$ (3) and cis- $[Pt(TeCF_3)_2-(PPh_3)_2]$ (2) (1), *trans*-[Pt(SeCF₃)₂(PPh₃)₂] (3) are best compared with the structures of *cis*-[Pt(SePh)₂(PPh₃)₂] [10,25] and *trans*-[Pt(SePh)₂(PPh₃)₂] [25,26].

Although the number of compounds with the structural motif PtSeR (R = organic ligand) is increasing, e.g. [9,10,18,20,22–26], the molecular structures of the first alkylselenatoplatinum derivatives cis-[Pt(SeCF₃)₂(PPh₃)₂]

Both derivatives (Table 2, Fig. 1–4) **1** ($P2_1$ (no. 4)) and **3** ($P\overline{1}$ (no. 2)) crystallise in *anti*-conformation with respect to the CF₃ groups [9]. Pt–Se distances are slightly longer for the *cis*-derivative, **1**, than for the *trans*-isomer, **3**. Together with Pt–P distances, these values best match data reported

Fig. 1. The molecular structure of cis-Pt(SeCF₃)₂(PPh₃)₂ (1) (50% probability ellipsoids; H-atoms have been omitted). Interatomic distances in Å and angles in degrees (with estimated standard deviations in parantheses): Pt1–Sel 2.488(1), Pt1–Se2 2.484(1), Pt1–P1 2.283(2), Pt1–P2 2.280(2), Se1–C1 1.943(8), Se2–C2 1.942(10), C1–F 1.340(10)–1.365(10), C2–F 1.337(10)–1.345(11); and Se1–Pt1–Se2 91.98(3), P1–Pt1–P2 100.71(7), Se1–Pt1–P1 168.53(5), Se2–Pt1–P2 167.78(5), Se1–Pt1–P2 85.31(6), Se2–Pt1–P1 84.10(5).

Scheme 1. Possible isomers of $[Pt(ECF_3)_2(PPh_3)_2](E = Se, Te)$ in the solid state.

for SePh derivatives. Thus, none of the molecular structures of 1 and 3 gives evidence for deviations being subscribed to different electronic characteristics of the trifluoromethyl group in comparison with aromatic substituents. A systematic approach as outlined in [9] can neither be supported nor attenuated. All data fall into the range of values obtained for related compounds, e.g. [9,10,18,20,22– 26] within limits of accuracy.

While there are numerous platinum compounds with the structural element PtSeR ($\mathbf{R} = \text{organic substituent}$) and phosphine ligands (see above) known, the number of tellurato-platinum compounds is limited [20,27–30]. In this series, *cis*-[Pt(TeCF₃)₂(PPh₃)₂] represents the first example of its kind.

Fig. 2. Perspective view of the unit cell in the crystal structure of cis-Pt(SeCF₃)₂(PPh₃)₂ (1).

Fig. 3. The molecular structure of *trans*-Pt(SeCF₃)₂(PPh₃)₂ · 2CH₂Cl₂ (3) (50% probability ellipsoids; symmetry-related atoms are drawn as empty ellipsoids; solvent molecules and H-atoms have been omitted). Interatomic distances in Å and angles in degrees (with estimated standard deviations in parantheses): Pt1–Se1 2.461(1) 2×, Pt1–P1 2.325(1) 2×, Se1–C1 1.949(3), C1–F11 1.347(3), C1–F12 1.351(3), C1–F13 1.341(3); and Se1–Pt1–Se1' 180, P1–Pt1–P1' 180, Se1–Pt1–P1 84.39(2) 2×, Se1–Pt1–P1' 95.61(2) 2×.

cis-[Pt(TeCF₃)₂(PPh₃)₂] (2) crystallizes in the monoclinic space group *C*2/*c* (no. 15) with four molecules per unit cell (Table 2; Fig. 5 and 6) as the *cis*, *anti* isomer. The nearly square-planar arrangement of ligands around the platinum centre is in absolute agreement with expectations for d⁸ complexes. Bond lengths of 2.649(1) Å (2×) (Pt–Te) and 2.294(1) Å (2×) (Pt–P) differ from those values determined for 1,2-benzeneditellurato-bis(triphenylphosphine)platinum(II) [29], to our knowledge the only example of a Pt–Te complex with the tellurium atoms in *cis* arrangement.

Fig. 4. The packing diagram for *trans*-Pt(SeCF₃)₂(PPh₃)₂ \cdot 2CH₂Cl₂ (3) viewed along the crystallographic *b*-axis.

Fig. 5. The molecular structure of cis-Pt(TeCF₃)₂(PPh₃)₂ (2) (50% probability ellipsoids; symmetry-related atoms are drawn as empty ellipsoids; H-atoms have been omitted). Interatomic distances in Å and angles in degrees (with estimated standard deviations in parantheses): Pt1–Tel 2.649(1) 2×, Pt1–P1 2.294(1) 2×, Te1–C1 2.157(3), C1–F11 1.336(4), C1–F12 1.347(4), C1–F13 1.349(4); Te1–Pt1–P1 83.60(1), Te1–Pt1–P1' 174.13(2), Te1–Pt1–Te1' 93.57(1), P1–Pt1–P1' 99.68(3).

In this case, Pt–Te bonds are shorter (0.05-0.06 Å), while Pt–P bond lengths are slightly elongated (0.01-0.03 Å). The Pt–Te bond lengths in *cis*-[Pt(TeCF₃)₂(PPh₃)₂] (**2**) are absolutely within the range of reported values [20,27–30]. The value of 2.649(1) Å matches that of 2.623(1) Å reported for the terminal TePh group in [Pt₂(TePh)(μ -TePh)₂-(PEt₃)₂(η ⁵-2-CB₁₀H₁₁)] [20]. Deviations of Pt–P bond lengths and angles measured and documented in the literature may be attributed to packing effects.

Fig. 6. The packing diagram for cis-Pt(TeCF)₂(PPh₃)₂ (2) viewed along the crystallographic *c*-axis.

2.3. A short comparison of the molecular structures of cis-[$Pt(ECF_3)_2(PPh_3)_2$] (E = S [8], Se, Te)

All three compounds crystallize in monoclinic space groups acentric $P2_1$ (S, Se) or centric C2/c (Te). The inner co-ordination spheres are not influenced by this difference: Pt–P distances are of comparable lengths, Pt–E bond lengths deviate from each other in the expected manner and the angles around the platinum centre are not significantly influenced. The effect of lone electron pairs on the Pt–E–C angle as found for chalcogenato (carboxylato) compounds [31,32], is here negligibly small; all three compounds show comparable data (101.1–102.9°) for the Pt– E–C angles with the Pt–Se–C angle being most acute.

On the other hand, ECF₃ groups resemble the character of halides [33–35]. Consequently, a short comparison of structural data is given, i.e., in detail *cis*-[Pt(SCF₃)₂(PPh₃)₂] resembles *cis*-[PtCl₂(PPh₃)₂] [36], *cis*-[Pt(SeCF₃)₂(PPh₃)₂] (1), resembles *cis*-[PtBr₂(PPh₃)₂] and, finally, *cis*-[Pt(TeCF₃)₂(PPh₃)₂] (2), looks like the iodo derivative, *cis*-[PtI₂(PPh₃)₂]. Unfortunately, no crystallographic data for the latter halo complexes are available, but a comparison with related complexes displays absolutely comparable Pt–X and Pt–ECF₃ interatomic distances (X = Br, E = Se [37]; X = I, E = Te) [38,39]. Especially *trans*-[Pt(SeCF₃)₂-(PPh₃)₂] · 2 CH₂Cl₂, **3**, is very similar to *trans*-[PtBr₂(PPh₃)₂] · 2CH₂Cl₂ [40].

3. Experimental

3.1. General

Schlenk techniques were used throughout all manipulations. *cis*-[PtCl₂(PPh₃)₂] (ABCR) was used as received. [NMe₄]SeCF₃ and [NMe₄]TeCF₃ were prepared according to the literature procedures [4,5]. All solvents were dried by routine methods prior to use. NMR spectra were recorded on Bruker spectrometers AC200 and AVANCE 400 (¹H, ¹⁹F, ¹³C, ³¹P, ⁷⁷Se, ¹²⁵Te, and ¹⁹⁵Pt). External standards were used in all cases (¹H, ¹³C: Me₄Si; ¹⁹F: CCl₃F; ³¹P: H₃PO₄ (85%); ⁷⁷Se: Me₂Se; ¹²⁵Te: Me₂Te; ¹⁹⁵Pt: Na₂PtCl₆). Acetone- d_6 was used as an external lock (5 mm tube) in reaction control measurements while an original sample of the reaction mixture was measured in a 4 mm insert. HMBC technique was employed to determine the ¹⁹⁵Pt chemical shifts and to locate the ECF₃ (E = Se, Te) groups in the ⁷⁷Se and ¹²⁵Te NMR spectra. Coupling patterns were calculated using the program gNMR [41].

3.2. X-ray crystal structure determinations

Single crystals were grown from saturated acetonitrile (1, 2) or dichloromethane (3) solutions of the crude materials at -21 °C. All compounds *cis*-Pt(SeCF₃)₂(PPh₃)₂ (1), $cis-Pt(TeCF_3)_2(PPh_3)_2$ (2), and $trans-Pt(SeCF_3)_2(PPh_3)_2$ (3) form yellow single crystals which were sealed in glass capillaries and the suitability was checked with the help of an IP-diffractometer (STOE IPDS II). The same device was used to collect the reflection data of the respective best specimen using graphite-monochromated Mo Ka radiation (0.71073 Å). The data were corrected for Lorentz and polarization effects. A numerical absorption correction based on crystal-shape optimization was applied for all data [42]. The programs used are Stoe's x-AREA [43], including x-RED and x-SHAPE for data reduction and absorption correction [44], and the WINGX suite of programs [45], including siR-92 [46] and sHELXL-97 [47] for structure solution and refinement. All hydrogen atoms were placed in idealized positions and constrained to ride on their parent atom. The last cycles of refinement included atomic positions for all the atoms, anisotropic thermal parameters for all the non-hydrogen atoms and isotropic thermal parameters for all of the hydrogen atoms.

3.3. Synthesis of cis- $Pt(ECF_3)Cl(PPh_3)_2$ (E = Se, Te)

To a solution of 0.79 g (1.0 mmol) cis-PtCl₂(PPh₃)₂ in 10 mL CH₂Cl₂ 0.24 g (1.1 mmol) [NMe₄]SeCF₃ were added at room temperature. The mixture was stirred for 3 h wherein the colour changed from nearly colourless into bright yellow. [NMe₄]Cl which has precipitated was filtered off and the crude material dried. Analysis by ¹⁹F and ³¹P NMR spectroscopic methods revealed a composition of 85% *cis*-Pt(SeCF₃)Cl(PPh₃)₂ and 15% *cis*-Pt(SeCF₃)₂-(PPh₃)₂. The analogous reaction with [NMe₄]TeCF₃ (0.30 g; 1.1 mmol) carried out in MeCN gave a product mixture of 80% *cis*-Pt(TeCF₃)Cl(PPh₃)₂, 6% *cis*-Pt(TeCF₃)₂-(PPh₃)₂ and 14% *cis*-PtCl₂(PPh₃)₂.

3.4. Synthesis of cis- $Pt(ECF_3)_2(PPh_3)_2$ (E = Se, Te)

In a similar manner as described above, 0.48 g (2.2 mmol) $[NMe_4]ECF_3$ (E = Se, Te (0.60 g; 2.2 mmol)) were added to a suspension of 0.79 g (1.0 mmol) *cis*-PtCl₂-(PPh₃)₂ in 10 mL MeCN at room temperature. The mixtures were stirred for 60 min and became orange. $[NMe_4]Cl$ was filtered off and the crude material was dried. The com-

position of the crude material was determined (¹⁹F and ³¹P NMR) to consist of \approx 95% *cis*-Pt(SeCF₃)₂(PPh₃)₂ and \approx 5% *trans*-Pt(SeCF₃)₂(PPh₃)₂ in the case of the selenium derivative and exclusively of *cis*-Pt(TeCF₃)₂(PPh₃)₂ for the tellurium compound. In both cases, re-crystallisation from MeCN (-21 °C) gave yellow or orange crystals of the *cis* derivatives in approximately 90% yields.

cis-Pt(SeCF₃)₂(PPh₃)₂. M.p. 196–197 °C (dec.). Anal. Calc. for $C_{38}H_{30}P_2F_6Se_2Pt$: C, 44.94; H, 2.98. Found: C, 45.38; H, 3.00%.

cis-Pt(TeCF₃)₂(PPh₃)₂. M.p. 158–159 °C (dec.). Anal. Calc. for $C_{38}H_{30}P_2F_6Te_2Pt$: C, 41.01; H, 2.72. Found: C, 40.72; H, 2.73%.

3.5. Synthesis of trans- $Pt(SeCF_3)_2(PPh_3)_2$

Dissolution of 0.50 g (0.5 mmol) *cis*-Pt(SeCF₃)₂(PPh₃)₂ in 10 mL CH₂Cl₂ in an open beaker at ambient temperature afforded quantitatively yellow crystals of *trans*-Pt(SeCF₃)₂(PPh₃)₂ · 2CH₂Cl₂ (0.59 g; 0.5 mmol) upon crystallization at room temperature over a period of 60 h. The crystals loose CH₂Cl₂ upon storing in ambient atmosphere for several weeks.

trans-Pt(SeCF₃)₂(PPh₃)₂. M.p. 216–218 °C (dec.). Anal. Calc. for $C_{38}H_{30}P_2F_6Se_2Pt$: C, 44.94; H, 2.98. Found: C, 45.15; H, 3.22%.

Acknowledgement

This work was generously supported by the Deutsche Forschungsgemeinschaft (436 UKR 113).

References

- [1] For example: M. Blochmann, Chem. Vap. Deposit. 2 (1996) 85.
- [2] For example: P.J. Blower, J.R. Dilworth, Coord. Chem. Rev. 76 (1987) 121.
- [3] W. Tyrra, D. Naumann, B. Hoge, Yu.L. Yagupolskii, J. Fluorine Chem. 119 (2003) 101.
- [4] W. Tyrra, D. Naumann, Yu.L. Yagupolskii, J. Fluorine Chem. 123 (2003) 183.
- [5] W. Tyrra, N.V. Kirij, D. Naumann, Yu.L. Yagupolskii, J. Fluorine Chem. 125 (2004) 1435.
- [6] N.V. Kirij, W. Tyrra, D. Naumann, Yu.L. Yagupolskii, I. Pantenburg, M. Schäfer, J. Fluorine Chem. 125 (2004) 1933.
- [7] D. Naumann, W. Tyrra, S. Quadt, S. Buslei, I. Pantenburg, M. Schäfer, Z. Anorg. Allg. Chem. 631 (2005) 2733.
- [8] N.V. Kirij, W. Tyrra, D. Naumann, I. Pantenburg, Yu.L. Yagupolskii, Z. Anorg. Allg. Chem. 632 (2006) 284.
- [9] M.S. Hannu-Kuure, J. Komulainen, R. Oilunkaniemi, R.S. Laitinen, R. Suontamo, M. Ahlgrén, J. Organomet. Chem. 666 (2003) 111, and literature cited therein.
- [10] V.P. Ananikov, I.P. Beletskaya, G.G. Aleksandrov, I.L. Emerenko, Organometallics 22 (2003) 1414.
- [11] R. Oilunkaniemi, R.S. Laitinen, M. Ahlgrén, J. Organomet. Chem. 587 (1999) 200.
- [12] R. Oilunkaniemi, R.S. Laitinen, M. Ahlgrén, J. Organomet. Chem. 623 (2001) 168.
- [13] H. Kuniyasu, A. Maruyama, H. Kurosawa, Organometallics 17 (1998) 908.

- [14] J.M. Gonzales, D.G. Musaev, K. Morokuma, Organometallics 24 (2005) 4908.
- [15] K.R. Dixon, K.C. Moss, M.A.R. Smith, J. Chem. Soc., Dalton Trans. (1973) 1528.
- [16] K.R. Dixon, K.C. Moss, M.A.R. Smith, J. Chem. Soc., Dalton Trans. (1974) 971.
- [17] K.R. Dixon, K.C. Moss, M.A.R. Smith, J. Chem. Soc., Dalton Trans. (1975) 990.
- [18] S. Schäfer, C. Moser, J.J. Tirrée, M. Nieger, R. Pietschnig, Inorg. Chem. 44 (2005) 2798.
- [19] A. Singhal, V.K. Jain, B. Varghese, E.R.T. Tiekink, Inorg. Chim. Acta 285 (1999) 190.
- [20] S.A. Batten, J.C. Jeffery, L.H. Rees, M.D. Rudd, F.G.A. Stone, J. Chem. Soc., Dalton Trans. (1998) 2839.
- [21] S. Dey, V.K. Jain, J. Singh, V. Trehan, K.K. Bhasin, B. Varghese, Eur. J. Inorg. Chem. (2003) 744.
- [22] V.K. Jain, S. Kannan, R.J. Butcher, L.P. Jasinski, J. Chem. Soc., Dalton Trans. (1993) 1509.
- [23] M.S. Hannu-Kuure, R. Oilunkaniemi, R.S. Laitinen, M. Ahlgren, Z. Kristallogr. NCS 219 (2004) 23.
- [24] N.K. Lokanath, H.C. Devarajegowda, S.M. Anandalwar, J.S. Prasad, S. Narayan, V.K. Jain, Anal. Sci. 17 (2001) 565.
- [25] M.S. Hannu, R. Oilunkaniemi, R.S. Laitinen, M. Ahlgren, Inorg. Chem. Commun. 3 (2000) 397.
- [26] V.K. Jain, S. Kannan, E.R.T. Tiekink, J. Chem. Res. (S) (1994) 85;
 J. Chem. Res. (M) (1994) 0501.
- [27] L.-B. Han, N. Choi, M. Tanaka, J. Am. Chem. Soc. 119 (1997) 1795.
- [28] L.-B. Han, S. Shimada, M. Tanaka, J. Am. Chem. Soc. 119 (1997) 8133.
- [29] D.M. Giolando, T.B. Rauchfuss, A.L. Rheingold, Inorg. Chem. 26 (1987) 1636.
- [30] P.J. Bonasia, J. Arnold, J. Organomet. Chem. 449 (1993) 147.
- [31] Y. Kawahara, S. Kato, T. Kanda, T. Murai, K. Miki, J. Chem. Soc., Dalton Trans. (1996) 79.

- [32] S. Kato, O. Niyomura, Y. Kawahara, T. Kanda, J. Chem. Soc., Dalton Trans. (1999) 1677.
- [33] A. Haas, Chem.-Ztg. 106 (1982) 239.
- [34] A. Haas, Pure Appl. Chem. 63 (1991) 1577.
- [35] H.T.M. Fischer, D. Naumann, W. Tyrra, Chem. Eur. J. online available: http://dx.doi.org/10.1002/chem.200501305>.
- [36] G.K. Anderson, H.C. Clark, J.A. Davies, G. Ferguson, M. Parvez, J. Crystallogr. Spectrosc. Res. 12 (1982) 449, CA97:227911.
- [37] N.A. Barnes, A.K. Brisdon, M.J. Ellis, R.G. Pritchard, J. Fluorine Chem. 112 (2001) 35.
- [38] M.J. Arendse, G.K. Anderson, N.P. Rath, Acta. Cryst. C 55 (1999), IUC 9900083.
- [39] D. Li, D. Liu, Anal. Sci. 19 (2003) 1225.
- [40] P. Sharma, A. Cabrera, C. Alvarez, N. Rosas, E. Gomez, A. Toscano, Anal. Sci. 19 (2003) 1341.
- [41] P.H.M. Budzelaar, gNMR Version 4.1, Cherwell Scientific, Oxford, UK, 1998.
- [42] X-SHAPE 1.06, Crystal Optimisation for Numerical Absorption Correction (C) 1999 STOE & Cie GmbH Darmstadt.
- [43] X-AREA 1.16, Stoe & Cie GmbH Darmstadt, 2003.
- [44] X-RED 1.22, Stoe Data Reduction Program (C) 2001 Stoe & Cie GmbH Darmstadt.
- [45] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
- [46] A. Altomare, G. Cascarano, C. Giacovazzo, J. Appl. Crystallogr. 26 (1993) 343.
- [47] G.M. Sheldrick, SHELXL-97; Programs for Crystal Structure Analysis, University of Göttingen, Göttingen, 1997.
- [48] Crystallographic data for the structures have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 286231 for (1), CCDC 275938 for (2), CCDC 286232 for (3). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/ cif.